Roll No.:....

322453(22)

B. E. (Fourth Semester) Examination, Nov.-Dec. 2021

(New Scheme)

(CSE Branch)

DATA STRUCTURES

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt all questions. Part (a) of each unit is compulsory and carries 2 marks. Attempt any two parts from (b), (c) and (d) each question and carries 7 marks.

Unit-I

- 1. (a) Explain space and time complexity.
- 2
- (b) Explain sparse matrix and their representation.

(c) Write an algorithm to add two polynomials. (d) Write an algorithm to insert a new node at the front of circular linked list. 2. (a) What is Tail Recursion? 2 (b) Write an algorithm for recursive solution to the tower of Hanoi problem for N disks. 7 (c) Write each step to convert following expression to postfix expression by using stack. $Q = A + (B * C - (D/E \uparrow F) * G) * H$ 7 (d) Write algorithm to insert and delete elements in a 7 circular queue. 3. (a) Define complete binary tree. (b) Explain Threaded Binary Tree.

	(c) Create tree for the following given.									
	Inor				GH				4	
	Prec			ACI	BG	H				
	(d) Suppose A, B, C, D, E, F and G are 7 elements with weights as follows:									
	Item	A	В	С	D	E	F	G		
- 1		1				- 4				

Create an extended binary tree by Huffman algorithm.

Unit-IV

4. (a) Explain minimum cost spanning trees.

Weights

- (b) Explain the Breadth First Search Algorithm for graph traversal with suitable example.
- (c) Explain Kruskal's algorithm with example.
- (d) Explain Warshall's algorithm for finding shortest path is graph.

Unit-V

7

2

7

7

5.	(a) What is Hashing?	, 2							
	(b) Explain the quick sort algorithm. What is the complexity of an algorithm?	7							
	(c) Construct AVL tree for the following series								
	40, 30, 20, 60, 50, 80, 15, 28, 25	7							
	(d) Create a B-Tree of order 5	7							
	1, 12, 8, 2, 25, 6, 14, 28, 17, 7, 52, 16, 48,								
	68, 3, 26, 29, 53, 55, 45								